Mineral, complex and chelated micronutrient fertilisers are widely used in agriculture. However, there have been few studies on manganese and zinc fertilisers. In fact, specific chelating agents to provide these micronutrients to plants have not been found, in contrast to iron. This work considers the interactions of novel and traditional ligands in micronutrient mixtures used in hydroponics and fertigation. Theoretical speciation studies comparing the stability in solution have been carried out to simulate the possible interactions that can affect Fe, Mn and Zn in aqueous formulations containing these micronutrients. Unknown stability constants of ligands with Zn and Mn have been determined. Also, theoretical speciation investigations in hydroponic conditions have been carried out. It has been found that the new chelating agents, IDHA and EDDS, and the poorly studied o,p-EDDHA, can be good alternatives to the traditional sources such as EDTA, HEEDTA and DTPA principally for Zn fertilisers. The Mn and Zn chelates with o,p-EDDHA and complexes with lignosulfonate and gluconate have also shown high stability in a hydroponic nutrient solution, maintaining more than 80% Mn in solution until pH 10. The presence of o,o-EDDHA/Fe 3+ and o,p-EDDHA/Fe 3+ enhances the stability of Zn in solution in the mixed fertilisers. More studies with substrates are necessary to confirm these results and to extend them to other agronomic conditions.