2023
DOI: 10.1016/j.spasta.2023.100734
|View full text |Cite
|
Sign up to set email alerts
|

Determination of the best weight matrix for the Generalized Space Time Autoregressive (GSTAR) model in the Covid-19 case on Java Island, Indonesia

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
5

Year Published

2023
2023
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 10 publications
(8 citation statements)
references
References 27 publications
0
3
0
5
Order By: Relevance
“…Pada data ruang waktu dapat digunakan model GSTAR (Generalized Space Time Autoregressive) untuk memodelkan data tersebut. Data dengan pola stasioner dapat dimodelkan dengan model GSTAR [12] [7]. Sementara itu, data yang tidak stasioner (umumnya memiliki pola tren atau musiman) dapat dimodelkan dengan model Integrated GSTAR (GSTARI) atau model Seasonal GSTAR (S-GSTAR).…”
Section: Pendahuluanunclassified
“…Pada data ruang waktu dapat digunakan model GSTAR (Generalized Space Time Autoregressive) untuk memodelkan data tersebut. Data dengan pola stasioner dapat dimodelkan dengan model GSTAR [12] [7]. Sementara itu, data yang tidak stasioner (umumnya memiliki pola tren atau musiman) dapat dimodelkan dengan model Integrated GSTAR (GSTARI) atau model Seasonal GSTAR (S-GSTAR).…”
Section: Pendahuluanunclassified
“…The weight matrix that is characteristic of the GSTAR spacetime model can be used to identify the model. The relationship that occurs between a variety of geographical locations is depicted by this matrix (Huda & Imro'ah, 2023).…”
Section: Weight Matrixmentioning
confidence: 99%
“…The location weight matrix is a matrix that expresses the relationship of the observation area measuring N × N and is symbolized by W. Some weighting matrices that can be applied to the GSTAR model include uniform weights, distance inverse, and cross-correlation normalization [11]. The chosen weighting matrices can impact the accuracy and the prediction results [12]. Some research about GSTAR has discussed the modified weighting matrices in order to get better prediction results.…”
Section: Introductionmentioning
confidence: 99%