This paper is concerned with the predictive control of water level in an experimental pilot plant, in the presence of input constraints and uncertain time delays. Robustness is achieved by casting the delay uncertainty into a polytopic form and using a predictive control formulation based on linear matrix inequalities. Integral action is introduced into the controller to ensure offset-free tracking of step changes in the setpoint. Moreover, an integrator resetting procedure based on the concept of regions of guaranteed cost is proposed to improve the resulting transient response. The results show that the introduction of robustness into the predictive control formulation is indeed of value to avoid closed-loop instability in the presence of time delays. In addition, the integrator resetting procedure was found to provide substantial performance improvements in terms of overshoot and settling time.