The polymeric adsorption of methylene blue (MB) on a TiO(2) surface is reported. The MB molecule on the TiO(2) surface mainly exists as the H-trimeric adsorption state, which results in the MB@TiO(2) polymeric sol. The trimeric adsorption leads to a remarkable "blueshift" of visible-light adsorption of MB. Electrostatic attraction is important for trimeric adsorption of MB on TiO(2) surfaces. The trimer-monomer equilibrium is highly sensitive on temperature changes, showing an interesting reversible thermochromism. The MB@TiO(2) polymeric sol can be photodegraded under UV illumination without destroying the equilibrium of trimer-monomer. Compared with anionic methyl orange, the TiO(2) colloid hydrosol shows highly selective photocatalysis of MB and other cationic dyes, including crystal violet, methylene green, and victoria blue B. The MB@TiO(2) polymeric sol is stable under visible-light illumination because interfacial transfer of electrons does not exist between MB and TiO(2).