Titanium (Ti) is present as a trace element in seawater at extremely low concentrations (5-350 pM, where 1 pM = 10(-12) mol L(-1)) throughout the water column. Presently, little is known about the marine biogeochemistry of Ti and there is a distinct lack of oceanic measurements of Ti , because of the combined difficulties of trace-metal clean sampling for an element at such low levels and the lack of a suitable shipboard method of analysis. Here, a new cathodic stripping voltammetry procedure is presented for the rapid determination of Ti at pM concentrations in seawater that is capable of being used directly at sea. This method utilizes the catalytic enhancement of the reduction of the complex formed between Cupferron (N-nitrosophenylhydroxylamine) and Ti(IV). While Cupferron itself acts as both a complexing agent and an oxidizing agent, it was found that the optimal sensitivity was with bromate as an auxiliary oxidant. An advantage of this method is that it is useable over the pH range of 5.5-8. Under the conditions employed in this work, detection limits ranged from 5 pM to 12 pM. This new catalytic method is significantly more sensitive than existing methods and has been extensively tested at sea in the Atlantic and Southern Oceans.