A procedure is detailed for the determination of trace metals in high salinity petroleum produced formation water (PFW) by inductively coupled plasma mass spectrometry (ICP-MS) coupled with flow injection (FI) on-line matrix separation and preconcentration. High salinity PFW waters present complex composition containing various organic and inorganic substances. Mini-columns packed with Toyopearl AF-Chelate-650M iminodiacetate resin were used for the analyte separation/ preconcentration of Cd, Pb, Ni, Zn, V, Co and U; Toyopearl 8-hydroxiquinoline resin for Fe, and silica immobilized 8-hydroxyquinoline resin for Mo. A Doehlert matrix and desirability function was used to generate response surfaces to optimize the column separation/preconcentration parameters. Using 7.5 mL aliquots of PFW, method limits of detection of 0.0007, 0.009, 0.017, 0.024, 0.0002, 0.047, 0.058, 0.002, 0.013 and 0.041 ng ml À1 were obtained for Cd, Pb, Ni, Zn, U, Mo, Fe, Co, V and Mn, respectively. Vanadium, Co and Mn were determined by the method of standard additions whereas Cd, Pb, Ni, Zn, Mo, Fe and U were quantitated using isotope dilution. CASS-4 (coastal seawater) certified reference material was used for method validation and high-salinity PFW (39-120&) from Brazilian offshore platforms examined. The concentration ranges found in these waters were 0.