The study provides a comprehensive bibliometric analysis of imaging and non-imaging spectroscopy for wheat scab (INISWS) using CiteSpace. Therefore, we underpinned the developments of global INISWS detection at kernel, spike, and canopy scales, considering sensors, sensitive wavelengths, and algorithmic approaches. The study retrieved original articles from the Web of Science core collection (WOSCC) using a combination of advanced keyword searches related to INISWS. Afterward, visualization networks of author co-authorship, institution co-authorship, and country co-authorship were created to categorize the productive authors, countries, and institutions. Furthermore, the most significant authors and the core journals were identified by visualizing the journal co-citation, top research articles, document co-citation, and author co-citation networks. The investigation examined the major contributions of INISWS research at the micro, meso, and macro levels and highlighted the degree of collaboration between them and INISWS knowledge sources. Furthermore, it identifies the main research areas of INISWS and the current state of knowledge and provides future research directions. Moreover, an examination of grants and cooperating countries shows that the policy support from the People’s Republic of China, the United States of America, Germany, and Italy significantly benefits the progress of INISWS research. The co-occurrence analysis of keywords was carried out to highlight the new research frontiers and current hotspots. Lastly, the findings of kernel, spike, and canopy scales are presented regarding the best algorithmic, sensitive feature, and instrument techniques.