Introduction:
Iron deficiency anemia (IDA) and β-thalassemia trait (β-TT) are the most common types of microcytic hypochromic anemias. The similarity and the nature of anemia-related symptoms pose a foremost challenge for discriminating between IDA and β-TT. Currently, advances in technology have gave rise to computer-based decision-making systems. Therefore, advances in artificial intelligence have led to the emergence of intelligent systems and the development of tools that can assist physicians in the diagnosis and decision-making.
Aim:
The aim of the present study was to develop a neural network based model (Artificial Neural Network) for accurate and timely manner of differential diagnosis of IDA and β-TT in comparison with traditional methods.
Methods:
In this study, an artificial neural network (ANN) model as the first precise intelligent method was developed for differential diagnosis of IDA and β-TT. Data set was retrieved from Complete Blood Count (CBC) test factors of 268 individuals referred to Padad private clinical laboratory at Ahvaz, Iran in 2018. ANN models with different topologies were developed and CBC indices were examined for diagnosis of IDA and β-TT. The proposed model was simulated using MATLAB software package version 2018. The results showed the best network architecture based on the advanced multilayer algorithm (4 input factors, 70 neurons with acceptable sensitivity, specificity, and accuracy). Finally, the results obtained from ANN diagnostic model was compared to existing discriminating indexes.
Result:
The results of this model showed that the specificity, sensitivity, and accuracy of the proposed diagnostic system were 92.33%, 93.13%, and 92.5%, respectably; i.e. the model could diagnose frequent occurrence of IDA in patients with β-TT.
Conclusion:
The results and evaluation of the developed model showed that the proposed neural network model has a proper accuracy and generalizability based on the initial factors of CBC testing compared to existing methods. This model can replace the high-cost methods and discriminating indices to distinguish IDA from β-TT and assist in accurate and timely manner diagnosis.