Mandarin thinning is done by hand, increasing labor costs and raising total crop production costs. Mechanical thinning has been tested in peaches and other fruits. To achieve the maximum efficiency thinning has to be applied at a specific stage of vegetative development. In this research study, the mechanical thinning of 'Clemenrubi' mandarin branches during the different fruit development stages have been assessed using a vibratory laboratory device (amplitudes 0.015 and 0.030 m and frequencies 34.8 and 37.8 Hz). Branches with flower buds, flowers, small green fruits, and medium green fruits were tested for 12 weeks, in two different seasons. It was possible to mechanically detach flower buds, flowers, and green fruits using different combinations of amplitudes and frequencies.Removal percentage decreased when increasing retention traction force, according to a logarithmic regression model. A significant increment in equatorial diameter and retention traction force was registered when the fruit setting was finishing, while mass had a similar development with a week delay. During fruit setting (weeks 5, 6, and 7) removal percentage was higher, while the retention force was very low. The first weeks just after the natural thinning could be considered the adequate time for a mechanical thinning operation.