The octavolateralis systems of fishes include the vestibular, auditory, lateral line and electrosensory systems. They are united by common developmental and neuro-computational features, including hair cell sensors and computations based on cross-neuron analyses of differential hair cell stimulation patterns. These systems also all use both spectral and temporal filters to separate signals from each other and from noise, and the distributed senses (lateral line and electroreception) add spatial filters as well. Like all sensory systems, these sensors must provide the animal with guidance for adaptive behavior within a sensory scene composed of multiple stimuli and varying levels of ambient noise, including that created by human activities. In the extreme, anthropogenic activities impact the octavolateralis systems by destroying or degrading the habitats that provide ecological resources and sensory inputs. At slightly lesser levels of effect, anthropogenic pollutants can be damaging to fish tissues, with sensory organs often the most vulnerable. The exposed sensory cells of the lateral line and electrosensory systems are especially sensitive to aquatic pollution. At still lesser levels of impact, anthropogenic activities can act as both acute and chronic stressors, activating hormonal changes that may affect behavioral and sensory function. Finally, human activities are now a nearly ubiquitous presence in aquatic habitats, often with no obvious effects on the animals exposed to them. Ship noise, indigenous and industrial fishing techniques, and all the ancillary noises of human civilization form a major part of the soundscape of fishes. How fish use these new sources of information about their habitat is a new and burgeoning field of study.