Since the development of the first Computed Tomography (CT) equipment in the early 1970s, this diagnostic imaging modality has gone through several improvements. Exclusively digital and high quality images production without superposition of anatomical structures, examinations as fast as five seconds, and the capability of diagnosing important pathologies with no need of exploratory surgeries are some of the great advantages when using this technique. As a consequence, the role of this diagnostic procedure has been widely increasing worldwide. In the US, for instance, 2.2 million CT exams were performed in 1980, only 10 years after its implementation. This number increased to 78.7 million in 2015. As a result, absorbed dose by patients due to this technique has become a concern among radiologists, researchers and manufacturers, leading to the development of different methodologies to evaluate it. Ionization chambers, thermoluminescence (TL) and, more recently, optically stimulated luminescence (OSL) dosimetry, for instance, have been widely applied in order to estimate in vivo organ doses, in post-mortem subjects and in phantoms. Another approach that has been extensively used are the Monte Carlo simulations, which can be applied in comparison with experimental results. An experimental approach to evaluate organ doses in pediatric and adult anthropomorphic phantoms by using TLDs and OSLDs was employed in the present study. Several analyses were performed in order to stablish the best way to achieve the main results in this investigation and the methodology proved to be efficient. The characteristics of the OSLDs were analyzed to verify their applicability for evaluating doses from CT procedures. The characterization included homogeneity, linearity with the incident air kerma, reproducibility, reusability and an energy-dependent response to distinct effective energies evaluation. These dosimeters were applied along with TLDs in an adult and a pediatric anthropomorphic phantoms to evaluate organ doses due to clinical CT protocols. These protocols were selected after an analysis of patient data collected from the