2016
DOI: 10.1007/s11042-016-4041-7
|View full text |Cite
|
Sign up to set email alerts
|

Determining speaker attributes from stress-affected speech in emergency situations with hybrid SVM-DNN architecture

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 10 publications
(5 citation statements)
references
References 22 publications
0
4
0
1
Order By: Relevance
“…Generally speaking, a SER system is composed of two parts: a preprocessing part that extracts suitable features and a classifier that employs those features to perform ER. This section overviews existing strategies in the SER research area [ 21 , 22 ].…”
Section: Methodsmentioning
confidence: 99%
“…Generally speaking, a SER system is composed of two parts: a preprocessing part that extracts suitable features and a classifier that employs those features to perform ER. This section overviews existing strategies in the SER research area [ 21 , 22 ].…”
Section: Methodsmentioning
confidence: 99%
“…With the combination of these features, which the authors achieved an 85.8% accuracy with the testing set of the EMO-DB [27] corpus. Moreover, the researchers used the SVM classifier with different type features [41] that included the extracted timber and the MFCCs features [14] and the extracted Fourier parameter and the MFCCs features, and they classified them by the SVM classifier that achieved 83.93% and 73.3% accuracy respectively, on the EMO-DB [27] dataset.…”
Section: Related Workmentioning
confidence: 99%
“…Sistem pengenalan emosi wicara dapat digunakan oleh penyandang disablitas untuk komunikasi [3], [4], oleh aktor untuk konsistensi wicara emosi serta untuk acara pada media televisi yang interaktif [5], untuk membangun model guru dalam bentuk virtual [6], juga digunakan dalam studi yang mendeteksi kerusakan otak pada manusia [7], dan desain canggih dari speech embedding [8], [9]. Salah satu contoh mengenai emosi lainnya adalah bahwa emosi mengatur kehidupan kita sehari-hari; emosi merupakan bagian besar dari pengalaman manusia dan mempengaruhi pengambilan keputusan kita [10]- [12]. Untuk mencapai tujuan ambisius seperti itu, pengumpulan database wicara emosional adalah prasyarat.…”
Section: Pendahuluanunclassified