While observations have suggested that power-law electron energy spectra are a common outcome of strong energy release during magnetic reconnection, e.g., in solar flares, kinetic simulations have not been able to provide definite evidence of power-laws in energy spectra of non-relativistic reconnection. By means of 3D large-scale fully kinetic simulations, we study the formation of power-law electron energy spectra in nonrelativistic low-β reconnection. We find that both the global spectrum integrated over the entire domain and local spectra within individual regions of the reconnection layer have power-law tails with a spectral index p ∼ 4 in the 3D simulation, which persist throughout the non-linear reconnection phase until saturation. In contrast, the spectrum in the 2D simulation rapidly evolves and quickly becomes soft. We show that 3D effects such as self-generated turbulence and chaotic magnetic field lines enable the transport of high-energy electrons across the reconnection layer and allow them to access several main acceleration regions. This leads to a sustained and nearly constant accel-