Tight sandstone oil and gas reservoirs are widely distributed, rich in resources, with a bright prospect for exploration and development in China. Due to multiple evolutions of the structure and sedimentary system, the gas–water distribution laws are complicated in tight sandstone gas reservoirs in the northern Ordos area. It is difficult to identify gas and water layers in the study area. In addition, in the development and production, various factors, such as the failure of the instrument, the difference in construction parameters (injected sand volume, flowback rate), poor test results, and multi-layer joint testing lead to unreliable gas test results. Then, the inaccurate logging responses will be screened by unreliable gas test results for different types of fluids. It is hard to make high-precision fluid logging identification charts or models. Therefore, this article combines gas logging, well logging, testing and other data to research the test and logging data quality classification. Firstly, we select reliable standard samples through the initial gas test results. Secondly, we analyze the four main factors which affect the inaccuracy of gas test results. Thirdly, according to these factors, the flowback rate and the sand volume are determined as the main parameters. Then, we establish a recognition chart of injected sand volume/gas–water ratio. Finally, we proposed an evaluation method for testing quality classification. It provides a test basis for the subsequent identification of gas and water through the second logging interpretation. It also provides a theoretical basis for the exploration and evaluation of tight oil and gas reservoirs.