A graph that is connected G(V,E) is a graph in which there is at least one path connecting every two vertices in G; otherwise, it is called a disconnected graph. Labels or values can be assigned to the vertices or edges of a graph. A vertex-labeled graph is one in which only the vertices are labeled, and an edges-labeled graph is one in which only edges are assigned values or labels. If both vertices and edges are labeled, the graph is referred to as total labeling. If given n vertices and m edges, numerous graphs can be made, either connected or disconnected. This study will be discussed the number of disconnected vertices labeled graphs of order seven containing no parallel edges and may contain loops. The results show that number of vertices labeled connected graph of order seven with no parallel edges is N(G7,m, g)l= 6,727×Cm6; while for 7≤g≤ 21, N(G7,m, g)l= kg C(m−(g−6))g−1, where k7 =30,160, k8 = 30,765, k9=21,000, k10 =28,364, k11= 26,880, k12=26,460 , k13 = 20,790, k14 =10,290, k15 = 8,022, k16 = 2,940, k17 =4,417, k18 = 2,835, k19 =210, k20 = 21, k21= 1.