We discuss specifically elaborated technique for characterizing the train-average parameters of low-power picosecond optical pulses with the frequency chirp, arranged in high-repetition-frequency trains, in both time and frequency domains. This technique is applied to rather important case of pulse generation when a single-mode semiconductor heterolaser operates in a multi-pulse regime of the active mode-locking. In fact, the trains of optical dissipative solitary pulses, which appear under a double balance between mutually compensating actions of dispersion and nonlinearity as well as gain and optical losses, are under characterization. The presented approach involves the joint Wigner timefrequency distributions, which can be found for those picosecond optical dissipative solitary pulses due to the exploitation of a novel interferometric technique. Practically, the semiconductor InGaAsP/InP-heterolaser generating at the wavelength 1320 nm was exploited during the illustrating experiments carried out and the possibility of evaluating the corresponding joint Wigner time-frequency distributions has been obviously demonstrated.