Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Leakage within a water distribution system (WDS) leads to significant water supply reductions due to pipeline malfunctions, operational inefficiencies, and physical disruptions. This study investigates the experimental work on identifying the difference between continuous and intermittent water distribution systems using equivalent and series pipeline systems. The (WDS) will be monitored digitally at an accurate rate, and the data will be stored in a real-time database as graphs. As a result, in continuous water distribution systems, higher flow rates are directly linked to increased leakage severity, which is further aggravated by system losses and valve issues, as evidenced by the declining trends in the graph. In contrast, intermittent systems exhibit consistent leakage behavior across different scenarios and valves. The uniformity in sensor responses supports the effectiveness of current monitoring strategies and highlights the necessity for tailored management approaches for each system type. Research findings indicate that leakages lead to a decrease in flow rates that intensify with higher flows, underscoring the critical need to preserve the integrity of the system. In continuous water distribution systems (CWD), leakages occur at higher rates compared to intermittent systems (IWD), with instances of single leaks (SL) proving more detrimental than multiple leaks (ML) due to their concentrated impact. Particularly, the second valve shows increased vulnerability in both systems and thus necessitates focused monitoring and preventive maintenance. Furthermore, a detailed analysis quantified the variations in leakage rates and discharge volumes between continuous and intermittent systems, as well as across single and multiple leakage scenarios within each system, highlighting key areas that require attention.
Leakage within a water distribution system (WDS) leads to significant water supply reductions due to pipeline malfunctions, operational inefficiencies, and physical disruptions. This study investigates the experimental work on identifying the difference between continuous and intermittent water distribution systems using equivalent and series pipeline systems. The (WDS) will be monitored digitally at an accurate rate, and the data will be stored in a real-time database as graphs. As a result, in continuous water distribution systems, higher flow rates are directly linked to increased leakage severity, which is further aggravated by system losses and valve issues, as evidenced by the declining trends in the graph. In contrast, intermittent systems exhibit consistent leakage behavior across different scenarios and valves. The uniformity in sensor responses supports the effectiveness of current monitoring strategies and highlights the necessity for tailored management approaches for each system type. Research findings indicate that leakages lead to a decrease in flow rates that intensify with higher flows, underscoring the critical need to preserve the integrity of the system. In continuous water distribution systems (CWD), leakages occur at higher rates compared to intermittent systems (IWD), with instances of single leaks (SL) proving more detrimental than multiple leaks (ML) due to their concentrated impact. Particularly, the second valve shows increased vulnerability in both systems and thus necessitates focused monitoring and preventive maintenance. Furthermore, a detailed analysis quantified the variations in leakage rates and discharge volumes between continuous and intermittent systems, as well as across single and multiple leakage scenarios within each system, highlighting key areas that require attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.