Cataract is the major cause of blindness; the most common form is age-related, or senile, cataract. The reasons for the development of cataract are unknown. Here we demonstrate that nuclear cataract is associated with the extensive hydroxylation of protein-bound amino acid residues, which increases with the development of cataract by up to 15-fold in the case of DOPA. The relative abundance of the oxidized amino acids in lens protein (assessed per parent amino acid) is DOPA > o-and m-tyrosine > 3-hydroxyvaline, 5-hydroxyleucine > dityrosine. Nigrescent cataracts, in which the normally transparent lens becomes black and opaque, contain the highest level of hydroxylated amino acids yet observed in a biological tissue: for example, per 1000 parent amino acid residues, DOPA, 15; 3-hydroxyvaline, 0.3; compared with dityrosine, 0.05. The products include representatives of the hydroperoxide and DOPA pathways of protein oxidation, which can give rise to secondary reactive species, radical and otherwise. The observed relative abundance corresponds closely with that of products of hydroxyl radical or metal-dependent oxidation of isolated proteins, and not with the patterns resulting from hypochlorite or tyrosyl-radical oxidation. Although very little light in the 300 -400-nm range passes the cornea and the filter compounds of the eye, we nevertheless also demonstrate that photoxidation of lens proteins with light of 310 nm, the part of the spectrum in which protein aromatic residues have residual absorbance, does not give rise to the hydroxylated aliphatic amino acids. Thus the post-translational modification of crystallins by hydroxyl radicals/Fenton systems seems to dominate their in vivo oxidation, and it could explain the known features of such nuclear cataractogenesis.