During the assembly of Pangea, peri-Gondwanan terranes collided with the eastern and southern margins of Laurentia and brought with them unique detrital zircon U-Pb signatures. Discriminating between individual peri-Gondwanan terranes in the detrital record is difficult due to their similar geologic histories. However, characterization of this provenance is critical for understanding late Paleozoic sediment routing during development of Pangea. Along southeastern Laurentia, in the Arkoma Basin (present-day Arkansas and eastern Oklahoma, southeastern United States), we identified Middle Pennsylvanian (Desmoinesian) strata that exhibit a concentrated peri-Gondwanan detrital zircon signature (e.g., ca. 800–550 Ma). Although several southern peri-Gondwanan terranes (e.g., Maya, Suwannee) are closer to the Arkoma Basin, geologic data, such as predominantly north-to-south paleocurrents and proximal-to-distal facies relationships in these Desmoinesian strata, support a northern source (e.g., Ganderia, Avalonia, Meguma). Further evidence of a northern source comes from detrital zircon source mapping, which reveals the persistence of this peri-Gondwanan signal in depocenters to the north of the basin after the signal had diminished in the Arkoma Basin. To this end, bottom-up detrital zircon source modeling, source mapping, regional stratigraphy, paleocurrent data, and sandstone petrography allow us to reconstruct the evolution of this Middle Pennsylvanian (Desmoinesian) sediment pathway in the context of intraplate and plate-margin tectonic activity. This reconstruction documents processes affecting Earth’s surface (e.g., tectonics, climate) during the assembly of Pangea and describes in detail part of a dynamic continental-scale drainage system.