Abstract. The Tethyan Orogenic Belt records a long-lived geological cycle involving subduction and collision along the southern margin of the Eurasian continent. The West Kunlun Mountains, located at the junction between the Tibetan and Western Asian Tethyan realm, records multiple orogenic events from the Paleozoic to the Cenozoic that shape the northwestern Tibetan Plateau. However, deciphering the complex Mesozoic contractional and extensional tectonics to interpret the broader Tethyan geodynamics remains challenging. To address the tectonic transition following the early Cimmerian (Late Triassic) collision, this study investigates the newly identified Jurassic sedimentary strata and volcanic rocks in the West Kunlun Mountains. Zircon geochronological results of basalts and sandstones reveal that this ~ 2.5-km-thick package was deposited at ca. 178 Ma, rather than the previously reported Neoproterozoic age. The alkaline basalts at the top of the formation exhibit chemical compositions similar to oceanic island basalts, consistent with the intracontinental extension environment revealed by the upward-fining sedimentary pattern. Provenance analysis, integrating conglomerate clast lithologies with detrital zircons, suggests a substantial contribution from adjacent basement sources, likely influenced by the normal faulting during initial rift stage. These findings indicate that the West Kunlun Mountains rapidly transitioned into an extensional setting after suturing with Cimmerian terranes. The regional structure, stratigraphy and magmatism suggest that this Early - Middle Jurassic basin was subsequently inverted during the Late Jurassic and earliest Cretaceous. We propose that the Mesozoic deformational history in the West Kunlun Mountains was related to the northward subduction of the Neo-Tethys Ocean, as it transitioned from southward retreat to northward flat-slab advancement. Comparing with the entire strike-length of the Eurasian Tethyan orogen, we find that the subduction mode varied from the west to the east, reflecting the broad geodynamic changes to, or initial conditions of, the Neo-Tethyan system.