In this study, the configuration and hydrogen-bonding network of side-chain amides in a 35 kDa protein are determined via measuring differential and across-hydrogen-bond H/D isotope effects by the IS-TROSY technique, which leads to a reliable recognition and correction of erroneous rotamers frequently found in protein structures. First, the differential two-bond isotope effects on carbonyl 13C′ shifts, defined as Δ2Δ13C′ (ND) = 2Δ13C′ (NDE) − 2Δ13C′ (NDZ), provide a reliable means for the configuration assignment for side-chain amides, as environmental effects (hydrogen bonds and charges etc.) are greatly attenuated over the two bonds separating the carbon and hydrogen atoms and the isotope effects fall into a narrow range of positive values. Second and more importantly, the significant variations in the differential one-bond isotope effects on 15N chemical shifts, defined as Δ1Δ15N(D) = 1Δ15N(DE) − 1Δ15N(DZ), can be correlated with hydrogen-bonding interactions, particularly those involving charged acceptors. The differential one-bond isotope effects are additive with major contributions from intrinsic differential conjugative interactions between the E and Z configurations, H-bonding interactions, and charge effects. Furthermore, the pattern of across-H-bond H/D isotope effects can be mapped onto more complicated hydrogen-bonding networks involving bifurcated hydrogen-bonds. Third, the correlations between Δ1Δ15N(D) and hydrogen-bonding interactions afford an effective means for the correction of erroneous rotamer assignments of side-chain amides. The rotamer correction via differential isotope effects is not only robust but simple and can be applied to large proteins.