We discuss the capability of deuteron nuclear magnetic resonance (NMR) spectroscopy and relaxometry to reveal molecular ordering and dynamics in confined liquid crystals. The attention is focused on the high-temperature phase above the nematic-isotropic transition, which is -in the absence of the long-range orientational order -very suitable for the study of surface interactions. Deuteron NMR spectra and relaxation rates are presented for two representatives of confined liquidcrystal systems: 8CB in cylindrical cavities of Anopore membranes and 5CB with an embedded polymer network. A substantial increase in the transverse spin relaxation rate, stimulated by the surfaceinduced order in enclosures, has been observed. In cylindrical cavities, it exhibits a strong temperature dependence on approaching the phase transition, whereas in the polymer network dispersion it is temperature-independent. The increase of T2 ' provides information on the effect of spatial constraints on molecular mobility and on the surface orientational order parameter. Using deuteron relaxometry, one can measure the degree of orientational order in the isotropic phase not only in cylindrical but also in spherical cavities and enclosures of irregular shape, where the standard approach based on quadrupolar splitting of the NMR spectrum fails.