Abstract:Accurate prediction of mercury content emitted from fossil-fueled power stations is of utmost important to environmental pollution assessment and hazard mitigation. In this paper, mercury content in the output gas from boilers was predicted using an Adaptive Neuro-Fuzzy Inference System (ANFIS) integrated with particle swarm optimization (PSO). Input parameters were selected from coal characteristics and the operational configuration of boilers. The proposed ANFIS-PSO model is capable of developing a nonlinear… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.