2023
DOI: 10.15439/2023f865
|View full text |Cite
|
Sign up to set email alerts
|

Developing an interval method for training denoising autoencoders by bounding the noise

Bartłomiej Jacek Kubica

Abstract: This paper discusses prospects of using interval methods to training denoising autoencoders. Advantages and disadvantages of using the interval approach are discussed. It is proposed to formulate the problem of training the proper neural network as a constraint-satisfaction, and not optimization, problem. Pros and cons of this approach are considered. Preliminary numerical experiments are also presented.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?