Background
Promoting health behaviors and preventing chronic diseases through a healthy lifestyle among those with a low socioeconomic status (SES) remain major challenges. eHealth interventions are a promising approach to change unhealthy behaviors in this target group.
Objective
This review aims to identify key components, barriers, and facilitators in the development, reach, use, evaluation, and implementation of eHealth lifestyle interventions for people with a low SES. This review provides an overview for researchers and eHealth developers, and can assist in the development of eHealth interventions for people with a low SES.
Methods
We performed a scoping review based on Arksey and O’Malley’s framework. A systematic search was conducted on PubMed, MEDLINE (Ovid), Embase, Web of Science, and the Cochrane Library, using terms related to a combination of the following key constructs: eHealth, lifestyle, low SES, development, reach, use, evaluation, and implementation. There were no restrictions on the date of publication for articles retrieved upon searching the databases.
Results
The search identified 1323 studies, of which 42 met our inclusion criteria. An update of the search led to the inclusion of 17 additional studies. eHealth lifestyle interventions for people with a low SES were often delivered via internet-based methods (eg, websites, email, Facebook, and smartphone apps) and offline methods, such as texting. A minority of the interventions combined eHealth lifestyle interventions with face-to-face or telephone coaching, or wearables (blended care). We identified the use of different behavioral components (eg, social support) and technological components (eg, multimedia) in eHealth lifestyle interventions. Facilitators in the development included iterative design, working with different disciplines, and resonating intervention content with users. Facilitators for intervention reach were use of a personal approach and social network, reminders, and self-monitoring. Nevertheless, barriers, such as technological challenges for developers and limited financial resources, may hinder intervention development. Furthermore, passive recruitment was a barrier to intervention reach. Technical difficulties and the use of self-monitoring devices were common barriers for users of eHealth interventions. Only limited data on barriers and facilitators for intervention implementation and evaluation were available.
Conclusions
While we found large variations among studies regarding key intervention components, and barriers and facilitators, certain factors may be beneficial in building and using eHealth interventions and reaching people with a low SES. Barriers and facilitators offer promising elements that eHealth developers can use as a toolbox to connect eHealth with low SES individuals. Our findings suggest that one-size-fits-all eHealth interventions may be less suitable for people with a low SES. Future research should investigate how to customize eHealth lifestyle interventions to meet the needs of different low SES groups, and should identify the components that enhance their reach, use, and effectiveness.