2021
DOI: 10.1007/s12530-020-09364-z
|View full text |Cite
|
Sign up to set email alerts
|

Developing new deep-learning model to enhance network intrusion classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
23
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 31 publications
(23 citation statements)
references
References 20 publications
0
23
0
Order By: Relevance
“…depicts that the proposed SVM-ANN-IDS offer with existing Azzaoui et al, 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 Dhanya et al, 26 and GSR et al, 27 methods. The SVM-ANN-IDS model provide 24.38%, 15.26%, 23.07%, 14.26%, 12.45%, 22.96% and 24.10% greater recall compared with existing Azzaoui et al, 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 Dhanya et al, 26 and GSR et al, 27 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 and GSR et al, 27 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 and Dhanya et al, 26 methods. The proposed SVM-ANN-IDS provide 14.36%, 27.36%, 32.93%, 24.28%, 20.27%, and 21.48% lesser error rate compared with existing Azzaoui et al, 21 Sah et al, 22 Ravi et al, 23 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al,…”
Section: Justification Of Studymentioning
confidence: 79%
See 3 more Smart Citations
“…depicts that the proposed SVM-ANN-IDS offer with existing Azzaoui et al, 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 Dhanya et al, 26 and GSR et al, 27 methods. The SVM-ANN-IDS model provide 24.38%, 15.26%, 23.07%, 14.26%, 12.45%, 22.96% and 24.10% greater recall compared with existing Azzaoui et al, 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 Dhanya et al, 26 and GSR et al, 27 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 and GSR et al, 27 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al, 25 and Dhanya et al, 26 methods. The proposed SVM-ANN-IDS provide 14.36%, 27.36%, 32.93%, 24.28%, 20.27%, and 21.48% lesser error rate compared with existing Azzaoui et al, 21 Sah et al, 22 Ravi et al, 23 21 Sah et al, 22 Ravi et al, 23 Kasongo, 24 Halbouni et al,…”
Section: Justification Of Studymentioning
confidence: 79%
“…The effectiveness of the proposed method is assessed using performance metrics. Then the SVM-ANN-IDS method is analyzed with existing DNN-IDS, 21 RNN-SVM-IDS 22 and RNN-IDS 23 methods. Table 3 shows simulation parameters settings.…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…The results showed that the proposed method achieved improved performance compared to the current state‐of‐the‐art systems. Reference 25 proposed a new deep‐learning model for network intrusion detection using deep neural networks. The performance of the proposed method was evaluated on NSLKDD and CICIDS2017 datasets.…”
Section: Introductionmentioning
confidence: 99%