Porcine deltacoronavirus (PDCoV) is an important enteric coronavirus that has caused enormous economic losses in the pig industry worldwide. However, no commercial vaccine is currently available. Therefore, developing a safe and efficacious live-attenuated vaccine candidate is urgently needed. In this study, the PDCoV strain CH/XJYN/2016 was continuously passaged in LLC-PK cells until passage 240, and the virus growth kinetics in cell culture, pathogenicity in neonatal piglets, transcriptome differences after LLC-PK infection, changes in the functional characteristics of the spike (S) protein in the high- and low-passage strains, genetic variation of the virus genome, resistance to pepsin and acid, and protective effects of this strain when used as a live-attenuated vaccine were examined. The results of animal experiments demonstrated that the virulent PDCoV strain CH/XJYN/2016 was completely attenuated and not pathogenic in piglets following serial cell passage. Genome sequence analysis showed that amino acid mutations in nonstructural proteins were mainly concentrated in Nsp3, structural protein mutations were mainly concentrated in the S protein, and the N, M, and E genes were conserved. Transcriptome comparison revealed that compared with negative control cells, P10-infected LLC-PK cells had the most differentially expressed genes (DEGs), while P0 and P240 had the least number of DEGs. Analysis of trypsin dependence and related structural differences revealed that the P10 S protein interacted more strongly with trypsin and that the P120 S protein interacted more strongly with the APN receptor. Moreover, the infectivity of P240 was not affected by pepsin but was significantly decreased after exposure to low pH. Furthermore, the P240-based live-attenuated vaccine provided complete protection to piglets against the challenge of virulent PDCoV. In conclusion, we showed that a PDCoV strain was completely attenuated through serial passaging
in vitro
. These results provide insights into the potential molecular mechanisms of PDCoV attenuation and the development of a promising live-attenuated PDCoV vaccine.
IMPORTANCE
Porcine deltacoronavirus (PDCoV) is one of the most important enteropathogenic pathogens that cause diarrhea in pigs of various ages, especially in suckling piglets, and causes enormous economic losses in the global commercial pork industry. There are currently no effective measures to prevent and control PDCoV. As reported in previous porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus studies, inactivated vaccines usually elicit less robust protective immune responses than live-attenuated vaccines in native sows. Therefore, identifying potential attenuation mechanisms, gene evolution, pathogenicity differences during PDCoV passaging, and immunogenicity as live-attenuated vaccines is important for elucidating the mechanism of attenuation and developing safe and effective vaccines for virulent PDCoV strains. In this study, we demonstrated that the virulence of the PDCoV strain CH/XJYN/2016 was completely attenuated following serial cell passaging
in vitro
, and changes in the biological characteristics and protection efficacy of the strain were evaluated. Our results help elucidate the mechanism of PDCoV attenuation and support the development of appropriate designs for the study of live PDCoV vaccines.