İnternet kullanımındaki artışa paralel olarak dünyanın farklı noktalarındaki insanlar farklı konulardaki duygu ve düşüncelerini sosyal medyalar aracılığıyla kolay bir şekilde aktarabilmektedirler. Bu sosyal medyalar içerisinde önemli bir yere sahip olan Twitter vasıtasıyla küresel ölçekte her gün çeşitli konularda milyonlarca mesaj yazılmakta ve okunmaktadır. Firmaların rekabet gücünü artırmak açısından tüketici davranışlarını anlamak önemli bir konu iken Twitter gibi büyük veri kaynakları, davranışların analiz edilebilme yöntemlerini çok yönlü ele almaktadır. Aynı zamanda gelişmiş ülkeler güç sahibi olmak için veri madenciliği projelerine önemli kaynaklar ayırmaktadır. Çalışmada veri madenciliği algoritmaları kullanılarak mobilya tercihindeki eğilimleri belirlemek için bir sosyal medya ağı olan Twitter'da yapılan ilgili paylaşımlar değerlendirmeye alınmıştır. Bu kapsamda Rapidminer ve doğal dil işleme yazılımları kullanılarak içinde mobilya geçen popüler tweetler Mayıs 2018-Şubat 2019 tarihleri arasında on ay boyunca toplanmış ve doğal dil işleme yazılımları sayesinde tweetlerin duygu durumları (pozitif ve negatif) belirlenmiştir. Daha sonra pozitif ve negatif tweetlerde geçen anahtar kelimelerin morfolojik analizleri gerçekleştirilmiştir. Son olarak veri madenciliğinde kullanılan karar ağacı ve birliktelik algoritmalarından faydalanarak anlamlı bilgiler elde edilmiştir. Karar ağacı algoritmasına göre pozitif veya negatif duyguların oluşumunda itiraz, kampanya, keşfetmek ve fikir gibi kelimelerin baskın olduğu belirlenmiştir. Birliktelik algoritması sonucunda ise en pozitif duyguları uyandıran kelimelerin sipariş ile yapılmış, fırsat ve ahşap gibi ifadeler olduğu tespit edilmiştir. Aynı algoritmada en negatif duyguları uyandıran kelimeler ise kasvet, keyifsiz, rahatsız ve kumaş olarak sıralanmıştır.