In this paper, in order to improve the received signal strength (RSS) and signal quality, three arrays of electronically steerable parasitic array radiator (ESPAR) antennas are suggested for the ultra-high frequency (UHF) radio frequency identification (RFID) communication and sensing system applications.Instead of the single antenna, the array antennas have recently been widely used in many communication systems because of their peak gains, better radiation patterns, and higher radiation efficiency. Also, there are some important issues to use the antenna array like high data rates in wireless communication systems and to better understand the many targets or sensors. In this article, a wireless sensor network (WSN) is being investigated to overcome multipath fading and interference by antenna nulling technology that can be achieved through beam control ESPAR array antennas. The proposed ESPAR array antennas exhibit higher gains like 9.63, 10.2, and 12 dBi and proper radiation patterns from one array to another. Moreover, we investigate the mutual coupling effect on the performance of array antennas with different spacing (0.5λ, 0.75λ, λ) and configurations. It is found that the worst mutual coupling reduced by À28 to À34 dB for 2 Â 2 array, À3 to À43 dB for 2 Â 3 array, and finally À42 dB to À51 dB due to the antenna spacing from 0.5λ to λ. Thus, these suggested antennas could effectively be applied in the WSN communication systems, internet of things (IoT) networks, and massive wireless and backscatter communication systems.