2011
DOI: 10.1038/npre.2011.5883.1
|View full text |Cite
|
Sign up to set email alerts
|

Developing Predictive Molecular Maps of Human Disease through Community-based Modeling

Abstract: The failure of biology to identify the molecular causes of disease has led to disappointment in the rate of development of new medicines. By combining the power of community-based modeling with broad access to large datasets on a platform that promotes reproducible analyses we can work towards more predictive molecular maps that can deliver better therapeutics.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
6
0
1

Year Published

2011
2011
2018
2018

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(7 citation statements)
references
References 22 publications
0
6
0
1
Order By: Relevance
“…[15] SAGE anticipe la nécessité de mettre en commun les masses d'information issues de l'analyse moléculaire des maladies, en particulier des cancers, pour décrire des modèles moléculaire prédictifs (et pertinents) de ces maladies. Ceci constituera une ressource considérable pour le développement de nouveaux médicaments.…”
Section: Des Exemples à Succès De Recherche Précompétitiveunclassified
“…[15] SAGE anticipe la nécessité de mettre en commun les masses d'information issues de l'analyse moléculaire des maladies, en particulier des cancers, pour décrire des modèles moléculaire prédictifs (et pertinents) de ces maladies. Ceci constituera une ressource considérable pour le développement de nouveaux médicaments.…”
Section: Des Exemples à Succès De Recherche Précompétitiveunclassified
“…We downloaded TCGA breast cancer (BRCA) level 3 normalized mRNA expression data derived from the Agilent expression platform and the normalized RPPA protein expression data for 164 proteins and phosphoproteins (Supplemental Material 1, 2) from the Synapse website (https://www.synapse.org/; Derry et al 2012). Both gene expression and protein expression data were available for 397 BRCA tumors (excluding normal-like).…”
Section: Data and Preprocessingmentioning
confidence: 99%
“…We downloaded the METABRIC (Curtis et al 2012) from the Synapse website (Derry et al 2012), TRANSBIG (Desmedt et al 2007 Inferred transcription factor activity/protein activity and subtype associations Associations between inferred TF activity and subtype were assessed using the Mann-Whitney U-test on inferred activity values over paired groups of samples: (1) basal-like vs. HER2, LumA, LumB; (2) HER2 vs. LumA, LumB; (3) HER2 vs. basal-like; and (4) LumA vs. LumB. To evaluate the significance of each comparison, we used a permutation approach under which 1000 random W (TF-protein interaction) matrices were generated for each TF to compute an empirical null distribution for the test statistic.…”
Section: Data and Preprocessingmentioning
confidence: 99%
“…The data generators also provided metadata on the samples, including the geographical source of the malaria parasites, presence of specific mutations at key genetic loci associated with the emerging artemisinin resistance in Southeast Asia, experiment batch information, etc. All the data were stored on the Synapse platform (Derry et al 2012) and were accessible only to participants. It is important to note that the hackathon organizers undertook steps to ensure that the data set used in the hackathon remains confidential until the DREAM crowdsourcing challenge is launched.…”
Section: Data Setsmentioning
confidence: 99%