Entamoeba histolytica is the causative agent of amebiasis and infects up to 10% of the world's population. The molecular techniques that have enabled the up-and down-regulation of gene expression rely on the transfection of stably maintained plasmids. While these have increased our understanding of Entamoeba virulence factors, the capacity to integrate exogenous DNA into genome, which would allow reverse genetics experiments, would be a significant advantage in the study of this parasite. The challenges presented by this organism include inability to select for homologous recombination events and difficulty to cure episomal plasmid DNA from transfected trophozoites. The later results in a high background of exogenous DNA, a major problem in the identification of trophozoites in which a bona fide genomic integration event has occurred. We report the development of a negative selection system based upon transgenic expression of a yeast cytosine deaminase and uracil phosphoribosyl transferase chimera (FCU1) and selection with prodrug 5-fluorocytosine (5-FC). The FCU1 enzyme converts non-toxic 5-FC into toxic 5-fluorouracil and 5-fluorouridine-5'-monophosphate. E. histolytica lines expressing FCU1 were found to be 30 fold more sensitive to the prodrug compared to the control strain.
Protocol
FCU Negative Selection System in Entamoeba histolytica
Determination of Selection Efficiency
Representative ResultsThe E. histolytica transfectants showed robust expression of codon optimized recombinant FCU1 (Figure 1).When this protocol is followed correctly it results in selective elimination of E. histolytica cells expressing FCU1 in presence of 0.5 mM 5-fluorocytosine. Control cells, in contrast continue to grow normally at up to 5 mM concentration of 5-FC and reach confluence between 72 and 96 hrs (Figure 2-a). The FCU1 carrying cells at 48 hrs are completely lysed when the treated wells are viewed under a microscope. These also show decreased fluorescence when stained with the vital dye CMFDA, which is used in quantitative studies involving large number of samples ( figure 2-b). The FCU1/5-FC system is an effective and powerful negative selection tool for E. histolytica trophozoites.