Abstract:In recent research a performance evaluation framework for traffic management and Intelligent Transport Systems was developed, consisting of a set of Key Performance Indicators (KPIs) for the themes of traffic efficiency, safety, pollution reduction and social inclusion, all of which are key components of a smart city. One of the innovative elements of these KPIs is their ability to consider the transport policy layer, in the sense that the evaluation of the suitability and effectiveness of different strategies and ITS options is calculated in relation to the decision maker's high-level transport policy rather than objectively. This is achieved through weighting factors, whereby more important policy objectives are weighted more heavily in the calculation. But while the theoretical framework is ready to accommodate the policy layer, no methodology to determine the values of the weighting factors has been developed so far. The present study, therefore, concentrates on the development and testing of such a methodology, focusing on the environmental impact aspect of urban mobility management and ITS in the context of smart cities. The development is based on existing policy objectives and legislation in different cities and countries, while testing is carried out using the purposedeveloped CONDUITS_DST software with data from microsimulation models before and after the implementation of a bus priority signalling system in Brussels, Belgium. The results show that the method captures the expected effects, but also that it is able to reflect policy objectives and deliver evaluation results in relation to their alignment with those.