Background
Chayote is a high economic crop in the Cucurbitaceae family, playing an important role in food production, disease treatment and the production of degradable materials in industries. Due to the harsh environment, such as high temperature, drought and frost, some chayote resources are gradually disappearing. It is crucial to collect, characterize, and conserve chayote resources. However, the genetic diversity of chayote resources in China has not been studied so far.
Results
In this study, we collected 35 individuals of chayote from 14 provinces in China. Subsequently, we found 363,156 SSR motifs from the chayote genome and designed 57 pairs of SSR primers for validation. Out of these, 48 primer pairs successfully amplified bands, with 42 of them showing polymorphism. These 42 primer pairs detected a total of 153 alleles, averaging 3.64 alleles per locus. The polymorphic information content ranged from 0.03 to 0.78, with an average value of 0.41, indicating a high level of polymorphism. Based on the analysis using STRUCTURE, PCoA, and UPGMA methods, the 35 chayote individuals were divided into two major clusters. Through further association analysis, 7 significantly associated SSR markers were identified, including four related to peel color and three related to spine.
Conclusions
These molecular markers will contribute to the analysis of genetic diversity and genetic breeding improvement of chayote in the future.