SummaryA set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon the specific heat expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).