2018
DOI: 10.1080/02652048.2018.1477843
|View full text |Cite
|
Sign up to set email alerts
|

Development and characterisation of polymeric microparticle of poly(d,l-lactic acid) loaded with holmium acetylacetonate

Abstract: Biodegradable polymers containing radioactive isotopes such as Holmium 166 (Ho) have potential applications as beta particle emitters in tumour tissues. It is also a gamma ray emitter, allowing nuclear imaging of any tissue to be acquired. It is frequently used in the form of complexes such as holmium acetylacetonate (HoAcAc), which may cause damages in tissues next to the targets cancer cells, as it is difficult to control its linkage or healthy tissues radiotherapy effects. Poly(d,l-lactic acid), PDLLA, was … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 57 publications
0
1
0
Order By: Relevance
“…Many inconveniences in the use of oxides and resins as matrixes to produce particles for medical therapies come from their long-time stability in the human body what brings a risk of embolization in healthy organs. Recently, the biodegradable matrixes are being preferred to host radionuclides 56. Their lower time of stability gives them properties of controlled delivery systems: (1) release time of radionuclides is longer than in free formulations, (2) they maintain plasma concentration for a long time, (3) they also locomote in vivo through physical and/or chemical principles 57.…”
Section: Introductionmentioning
confidence: 99%
“…Many inconveniences in the use of oxides and resins as matrixes to produce particles for medical therapies come from their long-time stability in the human body what brings a risk of embolization in healthy organs. Recently, the biodegradable matrixes are being preferred to host radionuclides 56. Their lower time of stability gives them properties of controlled delivery systems: (1) release time of radionuclides is longer than in free formulations, (2) they maintain plasma concentration for a long time, (3) they also locomote in vivo through physical and/or chemical principles 57.…”
Section: Introductionmentioning
confidence: 99%