Objective: The objective of this study was to investigate the effects of micromagnetic stimuli strength and frequency from the Magnetic Pen (MagPen) on the rat right sciatic nerve. The nerve’s response would be measured by recording muscle activity and movement of the right hind limb. Approach: The MagPen was custom-built such that it can be held over the sciatic nerve in a stable manner. Rat leg muscle twitches were captured on video and movements were extracted using image processing algorithms. EMG recordings were also used to measure muscle activity. Main results: The MagPen prototype when driven by alternating current, generates time-varying magnetic field which as per Faraday’s Law of Electromagnetic Induction, induces an electric field for neuromodulation. The orientation dependent spatial contour maps for the induced electric field from the MagPen prototype has been numerically simulated. Furthermore, in this in vivo work on µMS, a dose-response relationship has been reported by experimentally studying how the varying amplitude (Range: 25 mVp-p through 6 Vp-p) and frequency (Range: 100 Hz through 5 kHz) of the MagPen stimuli alters the hind limb movement. The primary highlight of this dose-response relationship is that at a higher frequency of the µMS stimuli, significantly smaller amplitudes can trigger hind limb muscle twitch. This frequency-dependent activation can be justified following directly from the Faraday’s Law as the magnitude of the induced electric field is directly proportional to frequency. Significance: This work reports that µMS can successfully activate the sciatic nerve in a dose-dependent manner. The MagPen probe, unlike electrodes, does not have a direct electrochemical interface with tissues rendering it much safer than an electrode. Magnetic fields create more precise activation than electrodes because they induce smaller volumes of activation. Finally, unique features of µMS such as orientation dependence, directionality and spatial selectivity have been demonstrated.