Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose This paper aims to present a systematic review of the latest scientific literature, in the context of pediatric orthopedics, on the development by additive manufacturing of anatomical models, orthoses, surgical guides and prostheses and their clinical applications. Design/methodology/approach Following the current guidelines for systematic reviews, three databases (Elsevier Scopus®, Clarivate Web of ScienceTM and USA National Library of Medicine PubMed®) were screened using a representative query to find pertinent documents within the timeframe 2016–2023. Among the information, collected across the reviewed documents, the work focused on the 3D printing workflow involving acquisition, elaboration and fabrication stages. Findings Following the inclusion and exclusion criteria, the authors found 20 studies that fitted the defined criteria. The reviewed studies mostly highlighted the positive impact of additive manufacturing in pediatric orthopedic surgery, particularly in orthotic applications where lightweight, ventilated and cost-effective 3D-printed devices demonstrate efficacy comparable to traditional methods, but also underlined the limitations such as printing errors and high printing times. Among the reviewed studies, material extrusion was the most chosen 3D printing technology to manufacture the typical device, particularly with acrylonitrile butadiene styrene. Originality/value To the best of the authors’ knowledge, this is the first systematic review which annotates, from a more engineering point of view, the latest literature on the admittance of the clinical application of additive manufacturing (and its effects) within typical pediatric orthopedic treatments workflows.
Purpose This paper aims to present a systematic review of the latest scientific literature, in the context of pediatric orthopedics, on the development by additive manufacturing of anatomical models, orthoses, surgical guides and prostheses and their clinical applications. Design/methodology/approach Following the current guidelines for systematic reviews, three databases (Elsevier Scopus®, Clarivate Web of ScienceTM and USA National Library of Medicine PubMed®) were screened using a representative query to find pertinent documents within the timeframe 2016–2023. Among the information, collected across the reviewed documents, the work focused on the 3D printing workflow involving acquisition, elaboration and fabrication stages. Findings Following the inclusion and exclusion criteria, the authors found 20 studies that fitted the defined criteria. The reviewed studies mostly highlighted the positive impact of additive manufacturing in pediatric orthopedic surgery, particularly in orthotic applications where lightweight, ventilated and cost-effective 3D-printed devices demonstrate efficacy comparable to traditional methods, but also underlined the limitations such as printing errors and high printing times. Among the reviewed studies, material extrusion was the most chosen 3D printing technology to manufacture the typical device, particularly with acrylonitrile butadiene styrene. Originality/value To the best of the authors’ knowledge, this is the first systematic review which annotates, from a more engineering point of view, the latest literature on the admittance of the clinical application of additive manufacturing (and its effects) within typical pediatric orthopedic treatments workflows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.