Nano-encapsulation is a platform which offers a promising application for control release and the delivery of drugs in pharmaceuticals and antioxidant/antimicrobial in food systems. Poly (lactic-co-glycolide acid) (PLGA) is a biodegradable and biocompatible co-polymer of lactic acid and glycolic acid which is used for synthesizing food based polymeric nanoparticles (NP). The aim of this study was to evaluate the morphological and physicochemical properties and the controlled release of bioactive components derived from Aloe vera gel loaded PLGA NP. The results shows the mean hydrodynamic diameter of the unloaded NP is 103 nm which is significantly (p < 0.01) smaller than the loaded freeze dried powered gel (FDG) (147 nm) and liquid gel (LG) (221 nm) and the particle size distribution given by the Poly-dispersity Index were 0.2, 0.2 and 0.3, respectively. The zeta potential for unloaded, FDG and LG NP were ±60, ±28 and ±22 mV, respectively, hence were electrokinetically stable NP. No significant (p > 0.05) inhibition of the antioxidant potential was observed with loaded NP. The entrapment efficiency for the FDG synthesized was 87%, and the burst effect was observed after 4 h as a result of the encapsulation effect. The release kinetics of bioactive is govern by the combination of mass diffusion and capillary action.