Accurate modeling of intermolecular repulsion is an integral component in force field development. Although repulsion can be explicitly calculated by applying the Pauli exclusion principle, this approach is computationally viable only for systems of limited sizes. Instead, it has previously been shown that repulsion can be reformulated in a “classical” picture: the Pauli exclusion principle prohibits electrons from occupying the same state, leading to a depletion of electronic charge between atoms, giving rise to an enhanced nuclear–nuclear electrostatic repulsion. This classical picture is called the isotropic S2/R approximation, where S is the overlap and R is the interatomic distance. This approximation accurately captures the repulsion of isotropic atoms such as noble gas dimers; however, a key deficiency is that it fails to capture the angular dependence of the repulsion of anisotropic molecules. To include directionality, the wave function must at least be a linear combination of s and p orbitals. We derive a new anisotropic S2/R repulsion model through the inclusion of the anisotropic p orbital term in the total wave function. Because repulsion is pairwise and decays rapidly, it can be truncated at a short range, making it amenable for efficient calculation of energy and forces in complex biomolecular systems. We present a parameterization of the S101 dimer database against the ab initio benchmark symmetry-adapted perturbation theory, which yields an rms error of only 0.9 kcal/mol. The importance of the anisotropic term is demonstrated through angular scans of water–water dimers and dimers involving halobenzene. Simulation of liquid water shows that the model can be computed efficiently for realistic system sizes.