Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field’s progress and potential directions. The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded. A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies. Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models. Supplementary Information The online version contains supplementary material available at 10.1186/s12911-024-02729-3.
Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field’s progress and potential directions. The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded. A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies. Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models. Supplementary Information The online version contains supplementary material available at 10.1186/s12911-024-02729-3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.