Complex hereditary spastic paraplegia (HSP) is a genetic disorder that causes lower limb spasticity and weakness and intellectual disability. Deleterious mutations in the poorly characterized serine hydrolase DDHD2 are a causative basis for recessive complex HSP. DDHD2 exhibits phospholipase activity in vitro, but its endogenous substrates and biochemical functions remain unknown. Here, we report the development of DDHD2 −/− mice and a selective, in vivo-active DDHD2 inhibitor and their use in combination with mass spectrometry-based lipidomics to discover that DDHD2 regulates brain triglycerides (triacylglycerols, or TAGs). DDHD2 −/− mice show age-dependent TAG elevations in the central nervous system, but not in several peripheral tissues. Large lipid droplets accumulated in DDHD2 −/− brains and were localized primarily to the intracellular compartments of neurons. These metabolic changes were accompanied by impairments in motor and cognitive function. Recombinant DDHD2 displays TAG hydrolase activity, and TAGs accumulated in the brains of wild-type mice treated subchronically with a selective DDHD2 inhibitor. These findings, taken together, indicate that the central nervous system possesses a specialized pathway for metabolizing TAGs, disruption of which leads to massive lipid accumulation in neurons and complex HSP syndrome. D etermining the genetic basis for rare hereditary human diseases has benefited from advances in DNA sequencing technologies (1). As a greater number of disease-causing mutations are mapped, however, it is also becoming apparent that many of the affected genes code for poorly characterized proteins. Assigning biochemical and cellular functions to these proteins is critical to achieve a deeper mechanistic understanding of human genetic disorders and for identifying potential treatment strategies.Hereditary spastic paraplegia (HSP) is a genetically heterogeneous neurologic syndrome marked by spasticity and lower extremity weakness (2). Many genetic types of HSP have been identified and are numbered according to their order of discovery [spastic paraplegia (SPG) 1-72] (2, 3). Of these genetic variants, more than 40 have been mapped to causative mutations in protein-coding genes. HSP genes code for a wide range of proteins that do not conform to a single sequence-or function-related class. A subset of HSP genes, including PNPLA6 (or neuropathytarget esterase) (SPG39) (4), DDHD1 (SPG28) (5), and DDHD2 (SPG54) (3, 6-8), code for serine hydrolases. These enzymes have been designated as (lyso)phospholipases based on in vitro substrate assays (9-11), but their endogenous substrates and physiological functions remain poorly understood. The mutational landscape that affects these lipid hydrolases to cause recessive HSP is complex but collectively represents a mix of null and putatively null and/or functional mutations. Moreover, the type of HSP appears to differ in each case, with DDHD1 mutations causing uncomplicated HSP, whereas PNPLA6 and DDHD2 mutations lead to complex forms of the disease that...