Materials providing heat dissipation and electrical insulation are required for many electronic and medical devices. Polymer composites with hexagonal boron nitride (hBN) may fulfil such requirements. The focus of this study is to compare composites with hBN fabricated by injection moulding (IM), powder bed fusion (PBF) and casting. The specimens were characterised by measuring thermal conductivity, tensile properties, hardness and hBN particle orientation. A thermoplastic polyurethane (TPU) was selected as the matrix for IM and PBF, and an epoxy was the matrix for casting. The maximum filler weight fractions were 65%, 55% and 40% for IM, casting and PBF, respectively. The highest thermal conductivity (2.1 W/m∙K) was measured for an IM specimen with 65 wt% hBN. However, cast specimens had the highest thermal conductivity for a given hBN fraction. The orientation of hBN platelets in the specimens was characterised by X-ray diffraction and compared with numerical simulations. The measured thermal conductivities were discussed by comparing them with four models from the literature (the effective medium approximation model, the Ordóñez-Miranda model, the Sun model, and the Lewis-Nielsen model). These models predicted quite different thermal conductivities vs. filler fraction. Adding hBN increased the hardness and tensile modulus, and the tensile strength at high hBN fractions. The strength had a minimum as the function of filler fraction, while the strain at break decreased. These trends can be explained by two mechanisms which occur when adding hBN: reinforcement and embrittlement.