2023
DOI: 10.1016/j.hrtlng.2023.08.001
|View full text |Cite
|
Sign up to set email alerts
|

Development and validation of a prediction model for postoperative intensive care unit admission in patients with non-cardiac surgery

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(4 citation statements)
references
References 31 publications
0
2
0
2
Order By: Relevance
“…When strictly comparing metrics such as F1 score, LLMs still underperform dedicated classification models utilizing tabular features. [45][46][47][48][49][50][51][52][53][54][55][56][57][58] Traditional machine learning models are rarely utilized in the clinical setting because of difficulty in interpreting a model's predictions. In contrast, LLMs present natural language explanations understandable to human clinicians, and can develop a rationale for each outcome variable of interest.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…When strictly comparing metrics such as F1 score, LLMs still underperform dedicated classification models utilizing tabular features. [45][46][47][48][49][50][51][52][53][54][55][56][57][58] Traditional machine learning models are rarely utilized in the clinical setting because of difficulty in interpreting a model's predictions. In contrast, LLMs present natural language explanations understandable to human clinicians, and can develop a rationale for each outcome variable of interest.…”
Section: Discussionmentioning
confidence: 99%
“…The LLM in this study exhibited very good performance at ASA-PS classification prediction, ICU admission prediction, and hospital mortality prediction. When strictly comparing metrics such as F1 score, LLMs still underperform dedicated classification models utilizing tabular features . Traditional machine learning models are rarely utilized in the clinical setting because of difficulty in interpreting a model’s predictions.…”
Section: Discussionmentioning
confidence: 99%
“…Z. Xu и соавт. разработана и проверена модель, объединяющая пред-и интраоперационные переменные для прогнозирования поступления в ОИТ после операции [19]. Потенциальные предикторы включали возраст, класс по классификации ASA (American Society of Anesthesiologists), тип операции, неотложность операции, предоперационный уровень альбумина и мочевины, интраоперационное введение…”
Section: оценка риска - какие новые подходы?unclassified
“…У больных стабильной кристаллоидов, переливание крови и катетеризацию, а также время операции. Авторы создали онлайнкалькулятор для клинического применения, который может улучшить результаты лечения и помочь в распределении дорогостоящих и ограниченных ресурсов ОИТ [19].…”
Section: кардиальные осложнения при несердечных операцияхunclassified