The high mortality rate in sepsis patients is related to sepsis-associated liver injury (SALI). We sought to develop an accurate forecasting nomogram to estimate individual 90-day mortality in SALI patients. Data from 34,329 patients were extracted from the public Medical Information Mart for Intensive Care (MIMIC-IV) database. SALI was defined by total bilirubin (TBIL) > 2 mg/dL and the occurrence of an international normalized ratio (INR) > 1.5 in the presence of sepsis. Logistic regression analysis was performed to establish a prediction model called the nomogram based on the training set (n = 727), which was subsequently subjected to internal validation. Multivariate logistic regression analysis showed that SALI was an independent risk factor for mortality in patients with sepsis. The Kaplan‒Meier curves for 90-day survival were different between the SALI and non-SALI groups after propensity score matching (PSM) (log rank: P < 0.001 versus P = 0.038), regardless of PSM balance. The nomogram demonstrated better discrimination than the sequential organ failure assessment (SOFA) score, logistic organ dysfunction system (LODS) score, simplified acute physiology II (SAPS II) score, and Albumin–Bilirubin (ALBI) score in the training and validation sets, with areas under the receiver operating characteristic curve (AUROC) of 0.778 (95% CI 0.730–0.799, P < 0.001) and 0.804 (95% CI 0.713–0.820, P < 0.001), respectively. The calibration plot showed that the nomogram was sufficiently successful to predict the probability of 90-day mortality in both groups. The DCA of the nomogram demonstrated a higher net benefit regarding clinical usefulness than SOFA, LODS, SAPSII, and ALBI scores in the two groups. The nomogram performs exceptionally well in predicting the 90-day mortality rate in SALI patients, which can be used to assess the prognosis of patients with SALI and may assist in guiding clinical practice to enhance patient outcomes.