A headspace gas chromatographic tandem mass spectrometric (HS-GC-MS/MS) method was developed and fully validated, aiming for the simultaneous determination of 25 volatile organic compounds (VOCs, some of them previously unreported in honey bee studies) in 52 selected honey samples from Greece. The HS conditions were optimized, and method validation criteria were extensively investigated. The existence impact of the matrix effect was assessed, and matrix-matched calibration curves were developed for quantification purposes. The limits of quantification of the 25 analytes ranged from 0.2 ng g−1 to 0.6 ng g−1. Isoprene was the most commonly detected VOC, followed by octane and styrene. Other detected VOCs include benzene, n-hexane, trimethylbenzenes, xylenes, toluene, and p-dichlorobenzene. Concentrations fluctuated from 0.5 ng g−1 for isoprene and toluene, as well as 1,2,4-trimethylbenzene, to 22.6 ng g−1 for isoprene. Despite VOCs not being at the forefront of honey’s potential contamination, their prevalence in honey can provide significant data for human health risk assessment, considering their undisputable widespread consumption and the documented potential toxicity of VOCs in humans. In this sense, risk assessment for adults and children, as depicted in the hazard quotient and index and carcinogenic risk determination, did not disclose any potential threat after consumption of the investigated honey samples.