Background
There are limited data on survival prediction models in contemporary inoperable non-small cell lung cancer (NSCLC) patients. The objective of this study was to develop and validate a survival prediction model in a cohort of inoperable stage I-III NSCLC patients treated with radiotherapy.
Methods
Data from inoperable stage I-III NSCLC patients diagnosed from 1/1/2016 to 31/12/2017 were collected from three radiation oncology clinics. Patient, tumour and treatment-related variables were selected for model inclusion using univariate and multivariate analysis. Cox proportional hazards regression was used to develop a 2-year overall survival prediction model, the South West Sydney Model (SWSM) in one clinic (n = 117) and validated in the other clinics (n = 144). Model performance, assessed internally and on one independent dataset, was expressed as Harrell’s concordance index (c-index).
Results
The SWSM contained five variables: Eastern Cooperative Oncology Group performance status, diffusing capacity of the lung for carbon monoxide, histological diagnosis, tumour lobe and equivalent dose in 2 Gy fractions. The SWSM yielded a c-index of 0.70 on internal validation and 0.72 on external validation. Survival probability could be stratified into three groups using a risk score derived from the model.
Conclusions
A 2-year survival model with good discrimination was developed. The model included tumour lobe as a novel variable and has the potential to guide treatment decisions. Further validation is needed in a larger patient cohort.