PV windows are seen as potential candidates for conventional windows. Improving the comprehensive performance of PV windows in terms of electrical, optical, and heat transfer has received increasing attention. This paper reviews the development of BIPV façade technologies and summarizes the related experimental and simulation studies. Based on the results of the literature research, the average comprehensive energy-saving rate of BIPV façades can reach 37.18%. Furthermore, limitations and optimization directions of photovoltaic integrated shading devices (PVSDs), photovoltaic double-skin façades, and photovoltaic windows are presented. To improve the energy-saving potential of windows as non-energy efficiency elements of buildings, smart PV windows are proposed to be the key to breakthrough comprehensive performance. However, not all switchable windows concepts can be applied to PV windows. Typical studies on smart windows and PV windows are sorted out to summarize the challenges and optimization of smart PV window technical solutions. Considering the technological innovations in smart PV windows, two requirements of energy-saving materials and building envelopes are put forward. The advances in materials and the building envelope are complementary, which will promote the sophistication and promotion of solar building technology.