Purpose: To predict deep myometrial infiltration (DMI), clinical risk category, histological type, and lymphovascular space invasion (LVSI) in women with endometrial cancer using machine learning classification methods based on clinical and image signatures from T2-weighted MR images. Methods: A training dataset containing 413 patients and an independent testing dataset consisting of 82 cases were employed in this retrospective study. Manual segmentation of the whole tumor volume on sagittal T2-weighted MRI was performed. Clinical and radiomic features were extracted to predict: (i) DMI of endometrial cancer patients, (ii) endometrial cancer clinical high-risk level, (iii) histological subtype of tumor, and (iv) presence of LVSI. A classification model with different automatically selected hyperparameter values was created. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve, F1 score, average recall, and average precision were calculated to evaluate different models. Results: Based on the independent external testing dataset, the AUCs for DMI, high-risk endometrial cancer, endometrial histological type, and LVSI classification were 0.79, 0.82, 0.91, and 0.85, respectively. The corresponding 95% confidence intervals (CI) of the AUCs were [0.69, 0.89], [0.75, 0.91], [0.83, 0.97], and [0.77, 0.93], respectively. Conclusion: It is possible to classify endometrial cancer DMI, risk, histology type, and LVSI using different machine learning methods.