2016
DOI: 10.4067/s0717-97072016000200001
|View full text |Cite
|
Sign up to set email alerts
|

Development and Validation of Rp- HPLC Method for the Simultaneous Estimation of Tramadol Hydrochloride and Dicyclomine in Bulk and Pharmaceutical Formulation

Abstract: A simple, specific, accurate and precise reversed phase high pressure liquid chromatography (RP-HPLC) method has been developed for the simultaneous estimation of tramadol hydrochloride (TRA) and dicyclomine (DCY) in bulk and tablet dosage form. Chromatography was carried on Phenomex Gemini C 18 column (4.6 x 250 mm, 5µ particle size) using mixture of methanol, acetonitrile and 0.1% triethylamine (TEA) pH 3.0 (adjusted with orthophophoric acid) in the ratio of 35:5:60 (v/v/v) respectively as a mobile phase. Th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 3 publications
0
2
0
Order By: Relevance
“…Tramadol: 2016 Potentiometric selective electrodes designed for the electrochemical determination of tramadol hydrochloride in bulk, Pharmaceutical formulations (also applied to plasma and urine) [ 487 ]; cyclic voltammetry for the determination of tramadol (also paracetamol and caffeine) [ 488 ]; RP-HPLC method for the simultaneous analysis of tramadol hydrochloride and dicyclomine in bulk and tablet dosage form [ 489 ]; all-solid-state ion selective electrode for the determination of Tramadol Hydrochloride [ 490 ]; electrochemical sensor fabricated based on a glassy carbon electrode for determination of tramadol in pharmaceutical and biological samples [ 491 ]; all solid state polymeric membrane electrode for analysis of tramadol hydrochloride in pharmaceutical formulations [ 492 ]; UV spectrophotometric method for simultaneous determination of paracetamol and tramadol in paracetamol-tramadol tablets [ 493 ]; formulation and dissolution kinetics study of hydrophilic matrix tablets with tramadol hydrochloride and different co-processed dry binders as possible controlled release formulations [ 494 ]; colorimetric method for estimation of tramadol hydrochloride in pure and tablet dosage forms [ 495 ]; predictive pharmacokinetics of tramadol hydrochloride floating tablets [ 496 ]; 2017 electrochemical imprinted sensor for determination of tramadol by combination of a functionalized multiwall carbon nanotubes and a thin molecularly imprinted film [ 497 ]; RP-HPLC method for simultaneous quantitation of tramadol and aceclofenac [ 498 ]; voltammetric determination of tramadol [ 499 ]; electrochemical determination of tramadol and paracetamol [ 500 ]; review article on tramadol [ 501 ]; electrochemical sensors for the determination of tramadol hydrochloride in pharmaceutical formulations [ 502 ]; glassy carbon electrode for determination of warfarin and tramadol in pharmaceutical compounds [ 503 ]; anisotropic (spherical/hexagon/cube) silver nanoparticle embedded magnetic carbon nanosphere as platform for designing of tramadol imprinted polymer [ 504 ]; synthesis of phosphorylated derivatives of cis-tramadol and analysis by IR, NMR (H-1, C-13, P-31), mass spectra, and C, H, N [ 505 ]; development of controlled release matrix tablets of tramadol [ 506 ]; enantiomeric separation of tramadol by LC with fluorescence detection [ 507 ]; 2018 LC-MS/MS Quantification of Tramadol and Gabapentin Utilizing Solid Phase Extraction [ 508 ]; liquid-liquid microextraction combined with GC-FID for the quantification of methadone and tramadol [ 509 ]; sensor for the determination of tramadol in pharmaceutical and biological samples [ 510 ]; 15-year overview of increasing tramadol utilization and the impact of tramadol classificat...…”
Section: Routine and Improved Analyses Of Abused Substancesmentioning
confidence: 99%
“…Tramadol: 2016 Potentiometric selective electrodes designed for the electrochemical determination of tramadol hydrochloride in bulk, Pharmaceutical formulations (also applied to plasma and urine) [ 487 ]; cyclic voltammetry for the determination of tramadol (also paracetamol and caffeine) [ 488 ]; RP-HPLC method for the simultaneous analysis of tramadol hydrochloride and dicyclomine in bulk and tablet dosage form [ 489 ]; all-solid-state ion selective electrode for the determination of Tramadol Hydrochloride [ 490 ]; electrochemical sensor fabricated based on a glassy carbon electrode for determination of tramadol in pharmaceutical and biological samples [ 491 ]; all solid state polymeric membrane electrode for analysis of tramadol hydrochloride in pharmaceutical formulations [ 492 ]; UV spectrophotometric method for simultaneous determination of paracetamol and tramadol in paracetamol-tramadol tablets [ 493 ]; formulation and dissolution kinetics study of hydrophilic matrix tablets with tramadol hydrochloride and different co-processed dry binders as possible controlled release formulations [ 494 ]; colorimetric method for estimation of tramadol hydrochloride in pure and tablet dosage forms [ 495 ]; predictive pharmacokinetics of tramadol hydrochloride floating tablets [ 496 ]; 2017 electrochemical imprinted sensor for determination of tramadol by combination of a functionalized multiwall carbon nanotubes and a thin molecularly imprinted film [ 497 ]; RP-HPLC method for simultaneous quantitation of tramadol and aceclofenac [ 498 ]; voltammetric determination of tramadol [ 499 ]; electrochemical determination of tramadol and paracetamol [ 500 ]; review article on tramadol [ 501 ]; electrochemical sensors for the determination of tramadol hydrochloride in pharmaceutical formulations [ 502 ]; glassy carbon electrode for determination of warfarin and tramadol in pharmaceutical compounds [ 503 ]; anisotropic (spherical/hexagon/cube) silver nanoparticle embedded magnetic carbon nanosphere as platform for designing of tramadol imprinted polymer [ 504 ]; synthesis of phosphorylated derivatives of cis-tramadol and analysis by IR, NMR (H-1, C-13, P-31), mass spectra, and C, H, N [ 505 ]; development of controlled release matrix tablets of tramadol [ 506 ]; enantiomeric separation of tramadol by LC with fluorescence detection [ 507 ]; 2018 LC-MS/MS Quantification of Tramadol and Gabapentin Utilizing Solid Phase Extraction [ 508 ]; liquid-liquid microextraction combined with GC-FID for the quantification of methadone and tramadol [ 509 ]; sensor for the determination of tramadol in pharmaceutical and biological samples [ 510 ]; 15-year overview of increasing tramadol utilization and the impact of tramadol classificat...…”
Section: Routine and Improved Analyses Of Abused Substancesmentioning
confidence: 99%
“…A study of the relevant literature revealed a plethora of analytical methods for the evaluation of CXB and TMD both on their own and in combination dosage forms with other medications. These methodologies include UV Spectrophotometry, [10][11][12][13][14][15][16] HPLC, 15,[17][18][19][20][21][22][23][24][25][26][27][28] HPTLC, 18,[29][30][31][32] and LC-MS/MS. 33 On the other hand, the simultaneous measurement of CXB and TMD in the binary combination has not been reported by any analytical methods until this point.…”
Section: Introductionmentioning
confidence: 99%