The design process includes conceptual design, detailed design of components to withstand the loads they will be expected to experience, and then testing of full wind turbines and components to ensure that they have indeed met those design goals. This chapter covers all of these aspects of the design process. The substance of the chapter begins in Section 7.2 with an overview of the design process and then continues with a more in-depth examination of the various steps involved. This is then followed in Section 7.3 by a review of the basic wind turbine topologies. Section 7.4 gives an overview of international standards related to wind turbines. Section 7.5 then examines the types of loads that a wind turbine experiences, particularly with reference to the key international design standard IEC 61400-1. After that, Section 7.6 provides an overview of scaling relationships for loads and natural frequencies.These can be used for the initial starting point of a new wind turbine design. Section 7.7 discusses how a wind turbine power curve may be predicted, once the basic aspects of the design have been chosen. This is followed in Section 7.8 by an overview of some of the analysis tools that are available to assist in the development of a new design. Once a new design has been developed, it must be evaluated. This is the topic of Section 7.9. The chapter ends in Section 7.10 with a review of wind turbine testing methods and issues and aspects of component and certification testing.
Overview of Design IssuesThe process of designing a wind turbine involves the conceptual assembling of a large number of mechanical and electrical components into a machine which can convert the fluctuating power in the wind into a useful form. This process is subject to a number of constraints, but the fundamental ones involve the potential economic viability of the design. Ideally, the wind turbine should be able to produce power at a cost lower than its competitors, Wind Energy Explained: Theory, Design and Application, Second Edition